

57

Chapter 3: Airline booking system

Airline booking system

Scenario

Cambrian Air is a small airline which links Caernarfon airport in North Wales with the larger regional
airports in Manchester and Cardiff, allowing passengers to connect with international flights. Cambrian Air
operates several aircraft with the same 30-seat cabin layout. Daily flights are scheduled in each direction
between Caernarfon and Manchester, and Caernarfon and Cardiff.

It is intended that customers may use the web site to select a flight, check the availability of seats, choose
and reserve seats, then enter their contact details and make payment. Customers will be allowed 10
minutes to complete the booking process, with reserved seats being released for re-sale if payment is not
received by this time.

Design

The program will be constructed around an on-line database containing three principal tables:

The flight table will record the details of individual flights, including the date and time, and the route. The

flightNumber provided to customers when booking, such as 'CA23' , cannot be used as a primary key as this

may be re-used by the airline for a particular service each week.

Each flight will be linked to a set of 30 seat records, with each seat record relating to only one flight. The

seat record will uniquely identify the flight by its flightID, and show the row and seat letter. A variable will

record whether the seat is currently booked, available, or temporarily reserved whilst a customer is

completing their on-line booking. When booked, the seat record will link to the bookingID to allow access

to passenger information.

As in the Hardware Store project in the previous chapter, we will use classes of objects as intermediate

links between the on-line database and the web page displays.

The class will contain properties which are variables describing each object, such as the date and time for a

particular flight. The class will also contain methods which are functions which can be applied to the

objects, such as selecting the seat bookings for a particular flight.

3

58

Web-based programming projects

In addition to the public web pages, a password protected section of the site will be available to the airline

staff. This will allow passenger bookings to be examined, and staff can set up flights with groups of seats

which can be booked.

flightID date/time destination

Flight

object

user interface server software database

Flight class

59

Chapter 3: Airline booking system

Programming techniques

Pages will be produced using HTML augmented by a style sheet. The database will be accessed with PHP

and SQL code. A timer in PHP will operate the real time temporary seat reservation as customers complete

their bookings.

The booking system centres around a seating plan for the aircraft. An array of HTML button components
will represent seats, and can be displayed in colour according to availability.

Method

The web site will begin with a home page providing general information about the airport. From this page,
customers will be able to choose a 'Booking' menu option to obtain information about flight times and seat
availability.

Begin by setting up a new folder on your local computer and on the server with the name 'airline'. Create a

logo for the company similar to the heading above, and save this as a graphics image logo.png. Obtain a

suitable photograph of a small passenger aircraft, and save this as aircraft.jpg. Copy the two graphics files

to the server.

Open a blank text file and set up a style sheet with the lines of code shown in the two boxes below.

body

{

 font-family: arial, sans-serif;

}

table.menu

{

 border-collapse: collapse;

 width: 100%;

}

60

Web-based programming projects

th.menu

{

 text-align: left;

 padding: 8px;

 background-color: rgb(0, 153, 216);

 color: white;

}

a:link, a:visited

{

 color: white;

 text-decoration: none;

}

Save the file as styleSheet.css and copy it to the server.

Open a blank file and add the lines of code below. Save the file as index.php, then copy this to the server.

<html>

<head>

 <title> Cambrian Air </title>

 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />

 </head>

 <body>

 <table class=menu>

 <tr><th class=menu>

 Airport information

 <th class=menu>

 Booking

 </table>

 <p>

 <table cellpadding=20>

 <tr>

 <td>

 </td>

 </table>

 </body>

</html>

Run the website by entering the domain name for your site, followed by the directory airline, e.g:

 www.website.com/airline
The page index.php will be load automatically as the default homepage for the site. Check that this is

similar to the web page illustrated above.

Before developing the public booking system further, we will create a staff section for the web site where

flights can be set up and seats made available for booking. The staff pages will be password protected in a

similar way to the staff section of the Hardware Store project in the chapter 2.

Begin by creating a staff log-in screen. Open a blank file and add the lines of code below.

61

Chapter 3: Airline booking system

<?

 session_start();

 $_SESSION['login']='NO';

?>

<html>

<head>

 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />

 <title>Cambrian Air</title>

</head>

<body>

 <center>

 <form action="staffDisplayBookings.php" method="post">

 <table cellpadding=20>

 <tr><td>

 <h3>Staff Log-in</h3>

 <table border="0" cellpadding="10">

 <tr>

 <td>User name</td>

 <td>

 <? echo "<input type=text size=20 name=user >"; ?>

 </td></tr>

 <tr>

 <td>Password</td>

 <td>

 <? echo "<input type=password size=20 name=pass >"; ?>

 </td></tr>

 <tr>

 <td></td>

 <td><input type=submit value="Enter">

 </td></tr>

 </table></td></tr>

 </table>

 </form>

 </body>

</html>

Save the file as staffLogin.php and copy this to the server. Run the staffLogin.php page. Entry boxes
should appear. Notice that the password box is set to conceal the text which is being entered.

Log-in to the PHP MyAdmin web site for your database account and display the list of tables in the

database. Select the New option from the list of tables. Set up a database table for staff usernames and

passwords. Create three fields: staffID as integer, staffUsername and staffPassword both of type varchar

with a length of 20 characters. Name the table as 'staff' and save the table design.

62

Web-based programming projects

Set the staffID field to be the primary key. Click the Change option on the staffID line, then tick the auto
increment (A_I) box. Further information about setting up the staff table will be found in the Hardware
Store project in Chapter 2.

Use the Insert option to add several members of staff as test data.

We will now create the Staff class which will act as an interface between the database and the local

computer. Open a new file and save this as Staff.php. By convention, the names of classes begin with an

upper case letter. Add the lines of code shown in the boxes below:

<?
class Staff
{
 private $user;
 private $pass;
 function __construct($userSet,$passSet)
 {
 $this->user = $userSet;
 $this->pass = $passSet;
 }
 private function checkUser($userWanted,$passWanted)
 {
 if (($userWanted==$this->user)&&($passWanted==$this->pass))
 return true;
 else
 return false;
 }

 public static function checkPassword($userWanted,$passWanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM staff";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $user=$row["staffUsername"];
 $pass=$row["staffPassword"];
 $staff[$i] = new Staff($user,$pass);
 $i++;
 }

63

Chapter 3: Airline booking system

Continued:

 $found=false;
 for ($i=1;$i<=$num;$i++)
 {
 $answer= $staff[$i]->checkUser($userWanted,$passWanted);
 if ($answer==true)
 {
 $found=true;
 }
 }
 return $found;
 }
 }
 ?>

Re-save the Staff.php file and copy it to the server.

After logging in, the first web page that a member of staff will access is staffDisplayBookings.php, where

we can provide a list of flights and allow staff to inspect the aircraft seat plan and bookings for any flight.

Open a blank file and save this as staffDisplayBookings.php. Add the program code below.

 <?

 session_start();

 $user=$_REQUEST['user'];

 $pass=$_REQUEST['pass'];

 $login=$_SESSION['login'];

?>

<html>

 <head>

 <title> Cambrian Air </title>

 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />

 </head>

 <body>

 <?

 if (!($_SESSION['login']=='YES'))

 {

 include('Staff.php');

 if (Staff::checkPassword($user,$pass)==false)

 header('Location: staffLogin.php');

 else

 $_SESSION['login']='YES';

 }

 include('staffMenu.php');

 ?>

 <p>

</body>

</html>

Save the staffDisplayBookings.php file and copy it to the server.

64

Web-based programming projects

On loading this page, the user name and password entered on the log-in screen will be accessed, then

passed to a Staff class file for checking against the database table. The checkPassword() function will

return a true value if the log-in details are valid, or false if incorrect. A result of false will cause the

program to return immediately to the staff log-in page.

All pages within the staff section of the web site will display the same menu options along the top of the

page. We can save repetition by creating a separate file for the menu program code, which can be included

in each staff page.

Open a blank file. Add the program code shown below, then save this as staffMenu.php. Copy the file to

the server.

 <table class=menu>

 <tr><th class=menu>

 STAFF OPTIONS

 <th class=menu>

 Add flight to schedule

 <th class=menu>

 Display flight schedule

 </table>

Before running the staff log-in system, a security file will be needed to authorise access to the on-line
database. This has the format:

 <?
$username="YOUR USER NAME";
$password="YOUR PASSWORD";
$database="YOUR DATABASE NAME";

 ?>

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with
the username and password which give you access to the PHP MyAdmin website. The entry for "YOUR
DATABASE NAME" is normally the same as the username entered on the first line. Save the small file as
user.inc and copy it to the server.

Run staffLogin.php and enter a correct user name and password. The staff menu should be displayed.

If an incorrect user name or password is entered, the program should return to the staff log-in page.

We can now work on the 'Add flight to schedule' option. Open a blank file and save this as

scheduleFlight.php. Add the lines of program code shown below. Re-save the updated file and copy it to

the server.

65

Chapter 3: Airline booking system

 <html>

 <head>

 <title> Cambrian Air </title>

 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />

 </head>

 <body>

 <?

 include('staffMenu.php');

 ?>

 <center>

 <p>

 </center>

 </body>

 </html>

Run the staff web site and select the 'Add flight to schedule' option. The scheduleFlight.php page should

open, displaying the menu and company logo.

We will now add components to allow the input of flight details. Add the lines of program code shown on
the next page to the scheduleFlight.php file. Save the updated file and copy it to the server.

Run the staff web site. Select the 'Add flight to schedule' option, then check that the components on the
input page are displayed correctly.

The date input will open a calendar to allow a date to be easily selected. The flight departure and
destination airports will be selected from drop-down lists.

66

Web-based programming projects

 <center>

 <p>

 <p>

 <form method=post action='addFlight.php' onsubmit='return submitForm(this)'>

 <table cellpadding=20>

 <tr>

 <td><table cellspacing=20></td>

 </tr>

 <tr>

 <td>Date</td>

 <td><input type="date" name="flightDate"></td>

 </tr>

 <tr>

 <td>Departure time</td>

 <td><input type="time" name="flightTime"></td>

 </tr>

 <tr>

 <td>Flight number</td>

 <td><input type=text name="flightNumber" size=12></td>

 </tr>

 <tr>

 <td>From</td>

 <td><select name="flightFrom">

 <option></option>

 <option>Caernarfon</option>

 <option>Cardiff</option>

 <option>Manchester</option>

 </select></td>

 </tr>

 <tr>

 <td>To</td>

 <td><select name="flightTo">

 <option></option>

 <option>Caernarfon</option>

 <option>Cardiff</option>

 <option>Manchester</option>

 </select></td>

 </tr>

 <tr>

 <td><td><input type='submit' value='Add flight to schedule' ></td>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

Return to the scheduleFlight.php file and add lines of code to produce a JavaScript confirm box, which will

appear when the 'Add flight' button is clicked.

67

Chapter 3: Airline booking system

</table>

</form>

<script>

function submitForm()

{

 return confirm('Confirm to add this flight to the schedule')

}

</script>

</center>

 </body>

</html>

Save the updated scheduleFlight.php file and copy it to the server. Run the scheduleFlight page. Click the
'Add flight' button, check that the confirm message is displayed and then select 'Cancel'.

In order to store flight details, a database table will be needed. Open the PHP MyAdmin site for your
database and add a new table. Give this the name 'flight' and add fields as shown below: flightID is
identified as the primary key and set as an auto-number; flightDate and flightTime have date and time data
types; and flightNumber, flightFrom and flightTo are set as varchar with sizes of 12, 30 and 30 characters
respectively.

As each new flight is added to the schedule, a set of 30 seats must be created and made available for
booking. To do this, we must also add a seat table to the database. Create another new table and give this
the name 'seats'. Add fields as shown below.

 seatID is identified as the primary key and set as an auto-number.

 rowNumber is an integer and seatLetter is varchar with a length of 1. Together they make up the
seat location, such as seat 6B.

 booked is specified as a tiny integer. It will take vales of 0 (seat available), 1 (seat temporarily
reserved during the booking procedure) or 2 (booked).

 journeyBookingID and flightID are integers, whilst bookingTime is datetime data type.

68

Web-based programming projects

In this project we will use an object oriented approach, with object classes forming interfaces between the
database and the local computer display. Begin by creating a Flight class. Open a blank file and add the
program code below.

<?
class Flight
{
 private $flightID;
 private $flightDate;
 private $flightTime;
 private $flightNumber;
 private $flightFrom;
 private $flightTo;
 private function __construct($flightID, $flightDate, $flightTime,
 $flightNumber, $flightFrom, $flightTo)
 {
 $this->flightID = $flightID;
 $this->flightDate = $flightDate;
 $this->flightTime = $flightTime;
 $this->flightNumber = $flightNumber;
 $this->flightFrom = $flightFrom;
 $this->flightTo = $flightTo;
 }
}
?>

Please note that the long line at the start of the constructor function should be entered by continuous

typing without a line break. Save the file as Flight.php and copy it to the server.

A Seat class will also be required. Open another blank file and add the program code in the two boxes
below.

Save the file as Seat.php and copy it to the server.

 <?
 class Seat
 {
 public static $seatObj = array();

 private $seatID;
 private $rowNumber;
 private $seatLetter;
 private $booked;
 private $bookingID;
 private $flightID;
 private $bookingTime;

69

Chapter 3: Airline booking system

Continued:

 public function __construct($seatID, $rowNumber, $seatLetter, $booked,
 $bookingID, $flightID, $bookingTime)
 {
 $this->seatID = $seatID;
 $this->rowNumber = $rowNumber;
 $this->seatLetter = $seatLetter;
 $this->booked = $booked;
 $this->bookingID = $bookingID;
 $this->flightID = $flightID;
 $this->bookingTime = $bookingTime;
 }

}
?>

We will now create an addFlight.php file which will be activated when the 'Add flight' button is clicked on
the flight input screen. Open a blank file and add the program code below.

<?

 $flightDate=$_REQUEST['flightDate'];

 $flightTime=$_REQUEST['flightTime'];

 $flightNumber=$_REQUEST['flightNumber'];

 $flightFrom=$_REQUEST['flightFrom'];

 $flightTo=$_REQUEST['flightTo'];

 echo"<p>flight date: ".$flightDate;

 echo"<p>flight time: ".$flightTime;

 echo"<p>flight number: ".$flightNumber;

 echo"<p>flight from: ".$flightFrom;

 echo"<p>flight to: ".$flightTo;

?>

Save the file as addFlight.php and copy it to the server. Run the staff web site and select the 'Add flight to

schedule' option. Enter details for a flight, then click OK to add the flight. Check that the addFlight.php

page is then loaded and details of the flight have been carried over correctly.

70

Web-based programming projects

Flights can now be set up and sets of available seats created for the booking system. We will assume that

the type of aircraft operated by Cambrian Air has seats in 11 numbered rows, with three seats A to C in

each row. However, due to the layout of the aircraft, there are no seats located at positions 1A, 11B and

11C.

Re-open the Flight.php class file and insert an addFlight() method. Please note the long lines, marked by
the curved arrows below, which should be inserted without line breaks.

public static function addFlight($flightID, $flightDate, $flightTime,

 $flightNumber, $flightFrom, $flightTo)

{

 include('user.inc');

 $conn = new mysqli(localhost, $username, $password, $database);

 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

 $query="INSERT INTO flight VALUES ('$flightID','$flightDate','$flightTime',

 '$flightNumber','$flightFrom','$flightTo')";

 $result=mysqli_query($conn, $query);

 $flightID = mysqli_insert_id($conn);

 mysqli_close($conn);

 Seat::createSeats($flightID);

}

}

 ?>

Save the updated Flight.php file and copy it to the server.

The addFlight() method will in turn call a method to create the set of 30 seats for the flight. Re-open the

Seat.php class file and insert a createSeats() method as shown in the two boxes below. The program code

uses IF… operators to avoid saving records for seats 1A, 11B and 11C.

public static function createSeats($flightID)

{

 include('user.inc');

 $conn = new mysqli(localhost, $username, $password, $database);

 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

 for ($r = 1; $r <= 11; $r++)

 {

71

Chapter 3: Airline booking system

Continued:

 if ($r > 1)

 {

 $query="INSERT INTO seats VALUES ('','$r','A','0','0',

 '$flightID','0000-00-00 00:00:00')";

 $result=mysqli_query($conn, $query);

 }

 if ($r < 11)

 {

 $query="INSERT INTO seats VALUES ('','$r','B','0','0',

 '$flightID','0000-00-00 00:00:00')";

 $result=mysqli_query($conn, $query);

 $query="INSERT INTO seats VALUES ('','$r','C','0','0',

 '$flightID','0000-00-00 00:00:00')";

 $result=mysqli_query($conn, $query);

 }

 }

 mysqli_close($conn);

 }

}

?>

Save the updated Seat.php file and copy it to the server.

The final step in adding a flight is to call the methods in the Flight and Seat class files which will add the
necessary records to the database tables.

Re-open the addFlight.php file. The 'echo' display lines can now be removed and replaced by code to call
the addFlight() method in the Flight class. Update the file as shown below:

<?
 $flightDate=$_REQUEST['flightDate'];
 $flightTime=$_REQUEST['flightTime'];
 $flightNumber=$_REQUEST['flightNumber'];
 $flightFrom=$_REQUEST['flightFrom'];
 $flightTo=$_REQUEST['flightTo'];

 include('Flight.php');
 include('Seat.php');
 Flight::addFlight('', $flightDate, $flightTime, $flightNumber,
 $flightFrom, $flightTo);
 header('Location: staffDisplayBookings.php');

?>

Save the addFlight.php file and copy it to the server. Run the staff web site, select the 'Add flight to
schedule' option and enter the details of a flight. The program should return to the staffDisplayBookings
page. Go to the database.

Check that the flight details have been uploaded correctly to the flight table, and that a set of seats from 1B
to 11A has been created in the seats table. If all is working correctly, add several more flights.

We can now work on display of flight information. Re-open the staffDisplayBookings.php file and add the
lines of program code below. These create a drop-down selection for the departure airport.

72

Web-based programming projects

 <th class=menu>

 Display flight schedule

 </table>
 <p>

 <table cellpadding=20>
 <tr>
 <td>
 <form method='post' action='staffDisplayBookings.php'>
 <table cellspacing=20>

 <tr>
 <td colspan=2>
 Search using one or more criteria:</td>
 </tr>
 <tr>
 <td>From</td>
 <td>
 <?
 $airport[0]='';
 $airport[1]='Caernarfon';
 $airport[2]='Cardiff';
 $airport[3]='Manchester';
 $wantedFlightFrom=$_REQUEST['flightFrom'];
 $wantedFlightTo=$_REQUEST['flightTo'];
 $wantedFlightDate=$_REQUEST['flightDate'];
 echo"<select name='flightFrom'>";
 for ($i=0;$i<=3; $i++)
 {
 if ($wantedFlightFrom==$airport[$i])
 echo"<option selected>";
 else
 echo"<option>";
 echo $airport[$i]."</option>";
 }
 echo"</select>";
 ?>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type='submit' value='Find flight'></td>
 </tr>
 </table>

 </form>
 </table>

 </body>
 </html>

Continue by adding the further lines of program code below, which allow the destination airport and flight
date to be selected.

73

Chapter 3: Airline booking system

 echo"</select>";
 ?>
 </td>
 </tr>

 <tr>
 <td>To</td>
 <td>
 <?
 echo"<select name='flightTo'>";
 for ($i=0;$i<=3; $i++)
 {
 if ($wantedFlightTo==$airport[$i])
 echo"<option selected>";
 else
 echo"<option>";
 echo $airport[$i]."</option>";
 }
 echo"</select>";
 ?>
 </td>
 </tr>
 <tr>
 <td>Date</td>
 <td>
 <?
 echo"<input type='date' name='flightDate' value='$wantedFlightDate'>";
 ?>
 </td>
 </tr>

 <tr>
 <td></td>
 <td>
 <input type='submit' value='Find flight'>

Save the updated staffDisplayBookings.php file and copy it to the server.

Open the staffDisplayBookings page. Make a selection of airports and date, then click the 'find flights'
button. When the button is clicked, the page is reloaded. Check that the flight requirements are still
displayed correctly in the input boxes.

Reloading the page allows PHP code to be run on the server to select flight information which we can
display in a table.

74

Web-based programming projects

Return to the staffDisplayBookings.php file and add the program code below to create headings for the

table of flights.

 <input type='submit' value='Find flight'>
 </td>
 </tr>
 </table>
 </form>

 </td>
 <td>
 <form method='post' action='staffDisplayBookings.php'>
 <table border=0>
 <tr>
 <td width=200>Flight schedule</td>

 <td><input type='submit' value='Show all flights'></td>
</table>
</form>
<form method='post' action='staffDisplayBookings2.php'>
<p>

 <table class = f>
 <tr>
 <td>Date</td>
 <td>Time</td>
 <td>Flight number </td>
 <td>From</td>
 <td>To</td>
 </tr>
 </table>
 </td></tr>

 </table>
 </body>
 </html>

Save the updated staffDisplayBookings.php file and copy it to the server.

 The next step is to display flight details in the table which meet the required search criteria.

The table can be formatted with alternate lines shaded in grey. To do this, open the styleSheet.css file and

add the commands shown below. These will only apply to the flight information table which we have

designated as 'class=f' within the program listing.

75

Chapter 3: Airline booking system

 table.f
 {
 font-family: arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
 }
 td.f, th.f
 {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
 }
 tr.f:nth-child(even)
 {
 background-color: #dddddd;
 }

Save the updated styleSheet.css file and copy it to the server.

The database search will be carried out by a method which we will add to the Flight class. Open the
Flight.php file and begin by adding the lines of code shown below. These create two new variables:

 $itemcount, which is the number of flight records found which meet the specified search
criteria. These records will be made into objects.

 $flightObj[], which is an array for identifying the objects produced from the flight records. The
first object will be named $flightObj[1], the second will be $flightObj[2], etc.

 <?
class Flight

{

 public static $itemCount = 0;

 public static $flightObj = array();

 private $flightID;
 private $flightDate;
 private $flightTime;
 private $flightNumber;
 private $flightFrom;
 private $flightTo;

Move now to the end of the Flight.php file and insert a selectFlights() method as shown in the two boxes
below.

 public static function selectFlights($wantedFlightDate, $wantedFlightFrom,
 $wantedFlightTo)
 {

 include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM flight ORDER BY flightDate";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
 $found=false;
 $i=1;
 $itemCount=0;

76

Web-based programming projects

Continued:

 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $flightID=$row["flightID"];
 $flightDate=$row["flightDate"];
 $flightTime=$row["flightTime"];
 $flightNumber=$row["flightNumber"];
 $flightFrom=$row["flightFrom"];
 $flightTo=$row["flightTo"];
 $i++;
 }

}

 }
 ?>

This method begins by opening the flight table in the database and loading all the records. A loop then
obtains the field values for each of the records in turn. To carry out a search for suitable flights, the
departure and destination airports and the flight date must be checked if the user has specified a
preference. Add the following lines of code within the loop.

 while ($i <= $num)
 {

 $flightFrom=$row["flightFrom"];
 $flightTo=$row["flightTo"];

 $found=true;
 if (strlen($wantedFlightFrom)>2)
 {
 if ($wantedFlightFrom != $flightFrom)
 $found = false;
 }
 if (strlen($wantedFlightTo)>2)
 {
 if ($wantedFlightTo != $flightTo)
 $found = false;
 }
 if (strlen($wantedFlightDate)>2)
 {
 if ($wantedFlightDate != $flightDate)
 $found = false;
 }
 if ($found==true)
 {
 $obj = new Flight($flightID, $flightDate, $flightTime, $flightNumber,
 $flightFrom, $flightTo);
 $itemCount++;
 Flight::$flightObj[$itemCount] = $obj;
 }

 $i++;
 }

 Flight::$itemCount=$itemCount;
 return $itemCount;

}
 }
 ?>

77

Chapter 3: Airline booking system

A group of flight objects will be created, identified as $flightObj[1], $flightObj[2]... , ready for display in the
table. However, the attributes of the objects cannot be accessed directly as these are private. We must
add a series of get() methods to display the attributes for the web page.

Continue adding methods to the Flight.php class file as shown below. Save the file and copy it to the
server.

 Flight::$itemCount=$itemCount;
 return $itemCount;
 }

 public function getFlightID(){return $this->flightID;}
 public function getFlightDate(){return $this->flightDate;}
 public function getFlightTime(){return $this->flightTime;}
 public function getFlightNumber(){return $this->flightNumber;}
 public function getFlightFrom(){return $this->flightFrom;}
 public function getFlightTo(){return $this->flightTo;}

 }
 ?>

Re-open the staffDisplayBookings.php file. The flight entries can now be added to the table. Insert the
lines of program code shown below in place of the </tr> tag. Save staffDisplayBookings.php and copy it to
the server.

 <table class = f>
 <tr>
 <td>Date</td>
 <td>Time</td>
 <td>Flight number </td>
 <td>From</td>
 <td>To</td>
 </tr>

 <?
 include('Flight.php');
 $count = Flight::selectFlights($wantedFlightDate, $wantedFlightFrom,
 $wantedFlightTo);
 for ($k=1; $k<=$count;$k++)
 {
 echo "<tr class = f>";
 $flightDate = Flight::$flightObj[$k]->getFlightDate();
 $dateFormatted = substr($flightDate,8,2)."/".substr($flightDate,5,2).
 "/".substr($flightDate,0,4);
 echo "<td class = f>".$dateFormatted."</td>";
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightTime()."</td>";
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightNumber()."</td>";
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightFrom()."</td>";
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightTo()."</td>";
 echo "<td class = f>";
 echo"<button name='flightSelected'value=".
 Flight::$flightObj[$k]->getFlightID().">display bookings</button>";
 echo"</tr>";
 }
 ?>

 </table>
 </td></tr>
 </table>

78

Web-based programming projects

Run the staff web site. Use the 'Add flight' option to create some additional flights.

Enter various flight selections and check that suitable flights are displayed. Also check that the 'Show all

flights' option works correctly.

The buttons alongside each of the flight records will display the bookings made for that flight. Before
working on this option, we will return to the public section of the website to develop the on-line booking
system and enter test data for seat bookings.

We will now create a page which will be loaded when a customer selects the 'Booking' option from the
public menu. This page will display a flight list very similar to the staff flight list. The only differences will
be the menu options, and the button alongside each flight record which now offers a 'make booking'
option:

We can save time by creating the new page from staffDisplay Bookings.php and making a few alterations
where necessary.

Load the file staffDisplay Bookings.php into a text editor, then re-save this with the file name

selectFlight.php. Make the series of changes shown below:

<html>
<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>

 remove the lines of PHP code before

the opening <html> tag

79

Chapter 3: Airline booking system

<html>
<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>

 <table class=menu>
 <tr>
 <th class=menu>
 Airport information</th>
 <th class=menu>
 Booking</th>
 </tr>
 </table>

 <p>
 <table cellpadding=20>
 <tr>
 <td>

 <form method='post' action='selectFlight.php'>

 <table cellspacing=20>
 <tr>
 <td colspan=2>
 Search using one or more criteria:
 </td>

 <input type='submit' value='Find flight'>
 </td>
 </tr>
 </table>
 </form>
 </td>
 <td>

 <form method='post' action='selectFlight.php'>

 <table border=0>
 <tr>
 <td width=200>Flight schedule</td>
 <td><input type='submit' value='Show all flights'></td>
 </table>
 </form>

 <form method='post' action='displayBookings.php'>

 <p>
 <table class = f>
 <tr>
 <td>Date</td>
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightFrom()."</td>";
 echo "<td class = f>".Flight::$flightObj[$k]->getFlightTo()."</td>";
 echo "<td class = f>";

 echo"<button name='flightSelected'value=".
 Flight::$flightObj[$k]->getFlightID().">make booking</button>";

 echo"</tr>";
 }
 ?>
 </table>

80

Web-based programming projects

 The PHP code block which appears above the <html> line has been removed.

 The PHP code block at the start of <body> which checks the staff password has been removed.

 The staff menu has been replaced by the public menu.

 The first <form> command has been amended to re-load the page 'selectFlight.php' when the 'Find
flight' button is clicked.

 Similarly, the second <form> command has been amended to re-load the 'selectFlight.php' page
when the 'Show all flights' button is clicked .

 The third <form> command has been amended to load the page 'displayBookings.php' if the
'make booking' button is clicked alongside any of the flight records.

 The button caption has been changed from 'display bookings' to 'make booking'.

Save the updated selectFlight.php file and copy it to the server. Run the public homepage and select the
'Booking' option. Check that the table of flights is displayed correctly, and can be searched according to
route or flight date.

We will now produce a page to show the seating plan for the aircraft, with available seats for the selected
flight colour coded in grey.

Open a new blank file and save this as displayBookings.php. Add the program code shown below. This
begins by displaying the menu and company logo as on previous pages. The flightID number of the flight
selected from the table is then displayed. A temporary 'echo' line shows this number for test purposes.

<html>
<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
</head>
<body>
 <table class=menu>
 <tr>
 <th class=menu>
 Airport information
 <th class=menu>
 Booking
 </table>
 <p>
 <?
 $flightSelected=$_REQUEST['flightSelected'];
 echo"Flight selected = ". $flightSelected;
 ?>
</body>
</html>

81

Chapter 3: Airline booking system

Save the displayBookings.php file and copy it to the server.

Run the public web site. Select the 'Booking' option. Choose a flight from the table display, then click the
'make booking' button. The displayBookings.php page should open, with the flightID value displayed.

Go to the PHP MyAdmin page and check in flight table of the database that the correct flightID number is
shown for the selected flight.

The next step is to display the date, time and route for the selected flight. Re-open the Flight.php class file
and add the selectFlightByID() method shown below. This will use the flightID number to create an object
containing details of the flight.

 public static function selectFlightByID($flightIDwanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM flight WHERE flightID=".$flightIDwanted;
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 $row=mysqli_fetch_assoc($result);
 $flightID=$row["flightID"];
 $flightDate=$row["flightDate"];
 $flightTime=$row["flightTime"];
 $flightNumber=$row["flightNumber"];
 $flightFrom=$row["flightFrom"];
 $flightTo=$row["flightTo"];
 $obj = new Flight($flightID, $flightDate, $flightTime, $flightNumber,
 $flightFrom, $flightTo);
 Flight::$flightObj[0] = $obj;
 }

 }
 ?>

Save the updated Flight.php class file and copy this to the server.

Return to the displayBookings.php file. Remove the PHP code which displayed the flightSelected during
testing, and replace it with the block of code on the next page. Save the updated displayBookings.php file
and copy it to the server.

The code calls the selectFlightByID() method in the Flight class, which then creates an object $flightObj[0]
for the selected flight. The attributes of the object are then displayed by means of get() methods.

Run the public web page and go to the table of flights. Select a flight and click the 'make booking' button.

82

Web-based programming projects

</table>
<p>

<table cellpadding=10>
<tr><td>
<?
 $flightSelected=$_REQUEST['flightSelected'];
 include('Flight.php');
 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->getFlightDate();
 $dateFormatted = substr($flightDate,8,2)."/".substr($flightDate,5,2).
 "/".substr($flightDate,0,4);
 $flightTime=Flight::$flightObj[0]->getFlightTime();
 $flightNumber=Flight::$flightObj[0]->getFlightNumber();
 $flightFrom=Flight::$flightObj[0]->getFlightFrom();
 $flightTo=Flight::$flightObj[0]->getFlightTo();
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;
?>
</td></tr>
</table>

</body>
</html>

The main purpose of the displayBookings.php page is to display a plan of the aircraft, showing seats

available. Open a suitable graphics application such as PhotoShop or Microsoft Word. Using the

illustration below as a guide, create an outline diagram of the aircraft. The outer rectangle bordering the

diagram has a size of 620 by 230 pixels, with a distance from the nose of the aircraft to the tail of 570

pixels. Save your diagram as 'seating plan.png' and copy it to the server.

Add lines of code to display the aircraft outline on the displayBookings.php page.

 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;
?>

</td></tr>
<tr>
 <td>

</td></tr>
</table>
</body>

83

Chapter 3: Airline booking system

Program code can now be added to create the seat display using buttons. Add the lines of code below,
which adjust the pixel positions of the seats to match the aircraft layout. It is important that the long
'echo' line producing a button is entered by continuous typing with no line breaks.

 <tr>
 <td>

 <?
 $Yoffset =170; $Xoffset = 11;
 $down = 114;
 $Xgap = 37; $Ygap = 30;
 $down = $down + $Yoffset;
 for ($j=0; $j<3; $j++)
 {
 switch ($j)
 {
 case 0: $r="C";break;
 case 1: $r="B";break;
 case 2: $r="A";break;
 }
 $down = $down + $j * $Ygap;
 if ($j==2)
 $down = $down - 2;
 for ($i=0; $i<11; $i++)
 {
 $seat = $i+1;
 $across = 323 + $Xoffset+ $i * $Xgap;
 if ($i>4)
 $across = $across +12;
 if (($i>7)&&($j<2))
 $across = $across +12;
 $c='#D3D3D3';
 if(($i<10)||($j==2))
 {
 if (($j<2)||($i>0))
 {
 echo"<button name='seatSelected' value=".$seat.$r.
 " style='position:absolute;left:"
 .$across."px;top:".$down.
 "px;font-size:18px;border-radius:4px;
 width:26px;background-color:".$c.";'>
 </button>";

 }
 }
 }
 }
 ?>

 </td></tr>
 </table>
 </body>

Save the updated displayBookings.php file and copy this to the server. Run the public web site, select a
flight, then click the 'make booking' button. The complete plan of the aircraft should now be displayed,
with all seats coloured grey. If the array of seats does not correctly align with the outline of the aircraft,
the position can be adjusted by altering the $Yoffset and/or $Xoffset values in the first line of program
code which you added on the previous page.

84

Web-based programming projects

The next step is to colour code the seats which are already booked. To do this, we will create test data to

simulate booked seats in the database.

Open the PHP MyAdmin web site for your database and go to the seats table. All seats should display a

booked value of 0, showing that they are currently available. Within the group of seats for a particular

flight, change the booked value for some seats from 0 to 2 to specify that they are booked:

The next step is to add a method to the Seat class which will access the seat records for the required flight

and create a set of seat objects.

Open the Seat.php class file and add a set of get() methods at the end, so that the private attributes of the
seat objects can be accessed from the main program.

 }

 public function getSeatID(){return $this->seatID;}
 public function getRowNumber(){return $this->rowNumber;}
 public function getSeatLetter(){return $this->seatLetter;}
 public function getBooked(){return $this->booked;}
 public function getBookingID(){return $this->bookingID;}
 public function getFlightID(){return $this->flightID;}
 public function getBookingTime(){return $this->bookingTime;}

}
?>

85

Chapter 3: Airline booking system

Also add a loadSeats() at the end of the Seat.php class file.

 public function getBookingID(){return $this->bookingID;}
 public function getFlightID(){return $this->flightID;}
 public function getBookingTime(){return $this->bookingTime;}

 public static function loadSeats($flightIDwanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM seats WHERE flightID='".$flightIDwanted."'";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $seatID=$row["seatID"];
 $rowNumber=$row["rowNumber"];
 $seatLetter=$row["seatLetter"];
 $booked=$row["booked"];
 $bookingID=$row["bookingID"];
 $bookingID=$row["journeyBookingID"];
 $bookingTime=$row["bookingTime"];
 $obj = new Seat($seatID, $rowNumber, $seatLetter, $booked,
 $bookingID, $bookingID, $bookingTime);
 Seat::$seatObj[$i] = $obj;
 $i++;
 }
 }

}
?>

Save the updated Seat.php file and copy it to the server.

Re-open the displayBookings.php file. Locate the block of PHP code at the start of the <body> section and

add lines of code to call the loadSeats() method in the Seat class.

 <td>

 <?
 $flightSelected=$_REQUEST['flightSelected'];
 include('Flight.php');

 include('Seat.php');
 Seat::loadSeats($flightSelected);

 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->flightDate;

Add program code to the displayBookings.php file as shown below. This will check the booking state for
each seat, and select a red button colour if the seat is booked.

86

Web-based programming projects

 for ($i=0; $i<11; $i++)
 {
 $seat = $i+1;
 $across = 323 + $Xoffset+ $i * $Xgap;
 if ($i>4)
 $across = $across +12;
 if (($i>7)&&($j<2))
 $across = $across +12;
 $c='#D3D3D3';

 for ($count=1; $count<=30; $count++)
 {
 $rowNumber=Seat::$seatObj[$count]->getRowNumber();
 $seatLetter=Seat::$seatObj[$count]->getSeatLetter();
 $booked=Seat::$seatObj[$count]->getBooked();
 if ((($i+1)==$rowNumber)&&($r==$seatLetter))
 {
 if ($booked>0)
 {
 $c='#cd5c5c';
 }
 }
 }

 if(($i<10)||($j==2))
 {
 if (($j<2)||($i>0))
 {
 echo"<button name='submit' value=".$seat.$r.

Save the displayBookings.php file and copy it to the server. Run the public web site and select the flight
which has seat booking codes set to 2. Check that the booked seats appear in red on the aircraft diagram.

We must now deal with the selection of seats by the customer.

Return to the displayBookings.php file. Go to the end of the first block of PHP code and add a <form>
command. This will make the page reload when a seat button is clicked.

87

Chapter 3: Airline booking system

 $flightTime=Flight::$flightObj[0]->flightTime;
 $flightNumber=Flight::$flightObj[0]->flightNumber;
 $flightFrom=Flight::$flightObj[0]->flightFrom;
 $flightTo=Flight::$flightObj[0]->flightTo;
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;

 echo"<form method='post' action='displayBookings.php?flight=$flightSelected'>";

 ?>
 </td>
</tr>

At the end of the page, close the form.

 }
 }

?>
</td></tr>

</form>

</table>

Return to the first section of PHP code and add lines to obtain the flightID and the selected seat location
when the page is reloaded.

 <table cellpadding=10>
 <tr>
 <td>
 <?
 $flightSelected=$_REQUEST['flightSelected'];
 include('Flight.php');
 include('Seat.php');

 $flightID=$_REQUEST['flight'];
 if ($flightID>0)
 {
 $flightSelected=$flightID;
 $seatSelected=$_REQUEST['seatSelected'];
 $seatLetterWanted=substr($seatSelected,-1,1);
 $seatRowWanted=substr($seatSelected,0,-1);
 }

 Seat::loadSeats($flightSelected);
 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->flightDate;

In order to test the program, go to the end of the displayBookings.php file and add temporary lines to
display the location for the seat selected.

 }

?>
 </td></tr>
 </form>
 </table>

 <?
 echo"<p>Seat row wanted: ".$seatRowWanted;
 echo"<p>Seat letter wanted: ".$seatLetterWanted;
 ?>

 </body>
</html>

88

Web-based programming projects

Save the updated displayBookings.php file and copy it to the server.

Run the aircraft seating plan page. Click on various seats and check that the seat row and letter selected
are displayed correctly.

It is necessary to keep a record of each seat which is selected. This can be done as a string list of the seat
row numbers and seat letters. Return to the displayBookings.php file and modify the block of code around
the <form> command.

 $flightNumber=Flight::$flightObj[0]->flightNumber;
 $flightFrom=Flight::$flightObj[0]->flightFrom;
 $flightTo=Flight::$flightObj[0]->flightTo;
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;

 $seatlist = $_REQUEST['seatlist'];
 $seatlist = $seatlist.$seatRowWanted.$seatLetterWanted."*";

 echo"<form method='post' action='displayBookings.php?flight=
 $flightSelected&seatlist=$seatlist'>";
 $seatsSelected = explode("*", $seatlist);

 ?>
 </td>
 <tr>
 <td>

The purpose of these program lines is to:

 Obtain the current list of seats $seatlist selected by the customer, e.g. *6B*6C*.

 Add the newly selected seat to the list, including a * character as a separator, e.g. *6B*6C*7A*

 Convert the single string of seat locations into an array $seatsSelected of the individual seat
locations, e.g. $seatsSelected[1]=6B, $seatsSelected[2]=6C, $seatsSelected[3]=7A .

89

Chapter 3: Airline booking system

Modify the colour selection section to include a green colour code for selected seats.

 if ((($i+1)==$rowNumber)&&($r==$seatLetter))
 {
 if ($booked>0)
 {
 $c='#cd5c5c';
 }

 else
 {
 $currentSeat=$rowNumber.$seatLetter;
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 if($seatsSelected[$k]== $currentSeat)
 {
 $c='#2ECC71';
 }
 }
 }

 }

Change the test display at the end of the page.

 </td></tr>
 </form>
 </table>

 <?
 echo"<p>Seat list: ".$seatlist;
 ?>

 </body>
 </html>

Save the displayBookings.php file and copy it to the server. It should now be possible to select seats, show
the seat colour in green, and add the seat to the list displayed at the bottom of the page.

We do, however, still need to correct a couple of problems:

 It is possible to select a seat which is shown in red as already booked.

 It is possible to select a seat more than once, with the seat identifier being added multiple times to
the seat list.

90

Web-based programming projects

Return to the displayBookings.php file and add the program code shown below. Save the updated file and
copy it to the server. Run the seat bookings display and check that these two problems have been solved.

 $flightTo=Flight::$flightObj[0]->flightTo;
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;
 $seatlist = $_REQUEST['seatlist'];

 $seatsSelected = explode("*", $seatlist);
 $wantedSeat=$seatRowWanted.$seatLetterWanted;
 $found=false;
 for ($count=1; $count<=30; $count++)
 {
 $rowNumber=Seat::$seatObj[$count]->getRowNumber();
 $seatLetter=Seat::$seatObj[$count]->getSeatLetter();
 $booked=Seat::$seatObj[$count]->getBooked();
 $currentSeat =$rowNumber.$seatLetter;
 if (($currentSeat==$wantedSeat)&&($booked==2))
 $found=true;
 }
 $duplicate=false;
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 if($seatsSelected[$k]== $wantedSeat)
 {
 $found=true;
 $seatsSelected[$k]='';
 $duplicate=true;
 }
 }
 if ($duplicate==true)
 {
 $seatlist = '*';
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 if (strlen($seatsSelected[$k])>0)
 $seatlist = $seatlist.$seatsSelected[$k]."*";
 }
 }
 if ($found==false)

 $seatlist = $seatlist.$seatRowWanted.$seatLetterWanted."*";
 echo"<form method='post' action='displayBookings.php?flight=
 $flightSelected&seatlist=$seatlist'>";
 $seatsSelected = explode("*", $seatlist);

Notice that the program now allows the user to de-select a seat by clicking on it a second time.

Return to displayBookings.php. Complete the page by replacing the 'echo' command with the lines of
program shown below. These display instructions for the user, the list of the seats currently selected, and a
button to continue to the payment page.

Save the displayBookings.php file and copy it to the server.

91

Chapter 3: Airline booking system

 </td></tr>
 </form>
 </table>

 <?
 echo"<form method=post action='customerDetails.php?flight=
 $flightSelected&seatlist=$seatlist'>";
 $output = str_replace("*"," ",$seatlist);
 echo"<p>Seats selected <input type='text' id='seats' size=24; value='".$output."'>";
 echo" ";
 echo"Seats coloured grey are currently available. Click to reserve or cancel.";
 echo"<button style='position:absolute;left:760px; top: 580px;font-size:16px;
 border-radius: 4px;width: 86px; background-color: #1184DF;
 color: white'>continue</button>";
 ?>
 </form>

 </body>
</html>

Run the page and check that seat bookings are listed correctly in the text display at the bottom of the page.

We will now move on to enter the customer's contact and payment details. Open a new file and enter the
lines of program code shown on the next page. These will create input boxes for entering the customer's
name.

92

Web-based programming projects

<html>
<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>
 <table class=menu>
 <tr><th class=menu>
 Airport information
 <th class=menu>
 Booking
 </table>
 <p>
 <?
 $bookingTime = date("Y-m-d H:i:00");
 echo"<form method=post
 action='confirm.php?flight=$flightSelected&seatsSelected=$seatsSelected'>";
 ?>
 <table cellpadding=10>
 </table>
 <table cellpadding=4>
 <tr>
 <td colspan=3><h3>Customer details
 </td></tr>
 <tr>
 <td align='right'>Title
 <td>
 <?
 $t[0]='Mr'; $t[1]='Mrs';
 $t[2]='Miss'; $t[3]='Ms';
 echo"<select name='title'>";
 for ($i=0; $i<4; $i++)
 echo"<option>".$t[$i];
 echo"</select>";
 ?>

 Forename

 <input type=text name=forename id=forename>

 Surname

 <input type=text name=surname id=surname>
 </table>
 </form>
 </body>
</html>

Save the file as customerDetails.php and copy it to the server. Run the public web site, select a flight and
seats, then click the 'continue' button. Check that input boxes for entering the customer's name are
displayed.

Continuing to work on the customerDetails.php file, add the lines of program shown below. These add
input boxes for the customer's address, and a box to display the payment due. Save the file and copy it to
the server.

93

Chapter 3: Airline booking system

 <input type=text name=surname id=surname>

 <tr>
 <td align='right'>Address
 <td><input type=text name=address1 size=30>
 <tr>
 <td>
 <td><input type=text name=address2 size=30>
 <tr>
 <td align='right'>Town
 <td><input type=text name=town>

 Postcode

 <input type=text name=postcode>
 <tr>
 <td align='right'>E-mail
 <td><input type=text name=email size=30>
 <tr>
 <td colspan=3><h3>Payment</td></tr>
 <tr>
 <td align='right'>Payment due
 <td>
 <?
 $payment=48.00 * $seatCount;
 echo"<input type='text' size = 60 value='".$seatCount.
 " seats @ £48.00: total ticket cost £".$payment.".00'>";
 echo"<input type=hidden name='paymentAmount' value='".$payment."'>";
 ?>

 </table>

Again input a flight and select seats, then click ‘continue’ to go to the customer details page. Notice that
the flight number and the list of seats selected have been carried over as part of the page URL. Continuing
to work on the customerDetails.php file, use this data to add information about the flight:

94

Web-based programming projects

<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>

 <?
 $flightSelected=$_REQUEST['flight'];
 $seatsSelected=$_REQUEST['seatlist'];
 include('Flight.php');
 include('Seat.php');
 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->getFlightDate();
 $dateFormatted = substr($flightDate,8,2)."/".substr($flightDate,5,2).
 "/".substr($flightDate,0,4);
 $flightTime=Flight::$flightObj[0]->getFlightTime();
 $flightNumber=Flight::$flightObj[0]->getFlightNumber();
 $flightFrom=Flight::$flightObj[0]->getFlightFrom();
 $flightTo=Flight::$flightObj[0]->getFlightTo();
 ?>

 <table class=menu>
 <tr>

Add the lines of code below to display the flight details.

 <?
 $bookingTime = date("Y-m-d H:i:00");
 echo"<form method=post
 action='confirm.php?flight=$flightSelected&seatsSelected=$seatsSelected'>";
 ?>
 <table cellpadding=10>

 <tr>
 <?
 echo "<td>".$dateFormatted."</td>";
 echo "<td>Departing ".substr($flightTime, 0, 5) ."</td>";
 echo "<td>Flight ".$flightNumber."</td>";
 echo "<td>".$flightFrom." to ".$flightTo."</td>";
 ?>
 </tr>

 </table>
 <table cellpadding=4>
 <tr>
 <td colspan=3><h3>Customer details</td></tr>

Save the updated customerDetails.php file and copy it to the server. Run the web site. Select a flight and
seats, then check that the flight details are displayed correctly.

95

Chapter 3: Airline booking system

At this point we must consider the requirements of the real-time system to avoid double booking of seats
by customers using different computers on-line at the same time. A state diagram for the processing of
bookings is shown below, and will be followed as we program the web page.

96

Web-based programming projects

Several customers might be using the web site at the same time to book seats from different locations.

When a customer first proceeds to the payment page, we must check that the required seats are still

available. To do this, open the Seat.php class file and add the method shown below.

 public static function checkAvailability($flightIDwanted, $seatlist)
 {
 Seat::loadSeats($flightIDwanted);
 $seatsSelected = explode("*", $seatlist);
 $available = true;
 for ($count=1; $count<=30; $count++)
 {
 $rowNumber=Seat::$seatObj[$count]->rowNumber;
 $seatLetter=Seat::$seatObj[$count]->seatLetter;
 $booked=Seat::$seatObj[$count]->booked;
 $currentSeat =$rowNumber.$seatLetter;
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 if(($seatsSelected[$k]==$currentSeat)&&($booked>0))
 {
 $available = false;
 }
 }
 }
 return $available;
 }
 }
 ?>

Save the updated Seat.php file and copy it to the server. Re-open customerDetails.php. Insert lines of
code to run the checkAvailability() method and respond to the result of the check.

 <?

 $available=Seat::checkAvailability($flightSelected, $seatsSelected);
 if ($available==false)
 {
 echo"<form method='post' action = 'displayBookings.php?flight=$flightSelected'>";
 echo"<p>A seat you selected has just been booked by another customer.
 Please return to the flight page and select an alternative seat.";
 echo"<p><input type=submit value='continue'>";
 echo"</form>";
 }
 else
 {

 $bookingTime = date("Y-m-d H:i:00");
 echo"<form method=post action='confirm.php?flight=$flightSelected

 Add a closing PHP bracket at the end of the page. Save the updated file and copy it to the server.

 </table>
 </form>

 <?
 }
 ?>

 </body>
 </html>

97

Chapter 3: Airline booking system

Re-open the Seat.php class file. Assuming that the selected seats are available, a temporary reservation is

made by setting the booked code to 1 for each of the required seats and inserting the current time in the

bookingTime field. Add a method to do this, save the file and copy it to the server.

 public static function reserveSeats($flightID,$seatlist,$bookingTime)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $seatsSelected = explode("*", $seatlist);
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 $seatLetterWanted=substr($seatsSelected[$k],-1,1);
 $seatRowWanted=substr($seatsSelected[$k],0,-1);
 $query="UPDATE seats SET booked='1',bookingTime='$bookingTime'
 WHERE flightID='".$flightID."' AND rowNumber='".$seatRowWanted."'
 AND seatLetter = '".$seatLetterWanted."'";
 $result=mysqli_query($conn, $query);
 }
 mysqli_close($conn);
 }
}
?>

Re-open the customerDetails.php file. Add a line of code to call the reserveSeats() method in the Seat
class. Save the updated customerDetails.php file and copy it to the server.

 else

 {
 $bookingTime = date("Y-m-d H:i:00");

 Seat::reserveSeats($flightSelected,$seatsSelected,$bookingTime);

 echo"<form method=post action='confirm.php?bookingTime=".$bookingTime."'>";
 ?>
 <table cellpadding=10>

To test the method, it will be necessary to run the web site on more than one computer. Select the same

flight, then the same seats on each screen. Click the 'continue' button on one of the pages, and the

customer name and address input boxes should be displayed. Now click 'continue' on the other computer.

A message should be displayed to indicate that the seats are no longer available.

Return to the customerDetails.php file. The list of seats booked can now be displayed. Add lines of

program code to do this, as shown below.

98

Web-based programming projects

 <table cellpadding=10>
 <tr>
 <?
 echo "<td>".$dateFormatted."</td>";
 echo "<td>Departing ".substr($flightTime, 0, 5) ."</td>";
 echo "<td>Flight ".$flightNumber."</td>";
 echo "<td>".$flightFrom." to ".$flightTo."</td>";

 $output = str_replace("*"," ",$seatsSelected);
 echo "<td>Seats selected:".$output."</td>";

 ?>
 </tr>

The total ticket price can then be calculated by determining the number of seats selected. Add the lines of
code to do this. Save the customerDetails.php file and copy it to the server.

 <tr>
 <td align='right'>Payment due
 <td>
 <?

 $seat = explode("*", $seatsSelected);
 $seatCount=0;
 for ($i=0;$i<count($seat);$i++)
 if (strlen($seat[$i])>0)
 $seatCount++;

 $payment=48.00 * $seatCount;
 echo"<input type='text' size = 60 value='".$seatCount." seats @ £48.00:
 total ticket cost £".$payment.".00'>";

Run the booking page and check that the seats selected are now listed, and that the payment due has been
calculated correctly.

Re-open the customerDetails.php file. The final entries required are the customer's credit card details.
Buttons will be added to complete or cancel the booking.

99

Chapter 3: Airline booking system

Add lines of code as shown to obtain this information.

 $payment=48.00 * $seatCount;
 echo"<input type='text' size = 60 value='".$seatCount." seats @ £48.00:
 total ticket cost £".$payment.".00'>";
 echo"<input type=hidden name='paymentAmount' value='".$payment."'>";
 ?>

 <tr>
 <td align='right'>Card type
 <td>
 <?
 $t[0]='';
 $t[1]='Visa Credit';
 $t[2]='Visa Debit';
 $t[3]='Mastercard Credit';
 $t[4]='Mastercard Debit';
 echo"<select name='cardType'>";
 for ($i=0; $i<5; $i++)
 {
 echo"<option>".$t[$i];
 }
 echo"</select>";
 ?>
 Card number
 <input type=text name='cardNumber'>
 Expires: month/year
 <input type=text name='expireMonth' size=2>

 /

 <input type=text name='expireYear' size=3>

 </table>

 <p>

 <button style='position:absolute;left:360px; font-size: 16px;
 border-radius: 4px;width: 186px;background-color: #1184DF;
 color: white'>complete booking</button>
 </form>

 <?
 echo"<form method='post'action='index.php?cancel=YES&flight=".
 $flightSelected."&seats=".$seatsSelected."'>";
 ?>
 <button style='position:absolute;left:360px; font-size: 16px;
 border-radius: 4px;width: 186px;background-color: white;
 color: black'>cancel transaction</button>

 </form>
 <?
 }
 ?>
 </body>
 </html>

Save the customerDetails.php file and copy it to the server. Run the booking page and check that the
payment input components and buttons are now displayed.

100

Web-based programming projects

Re-open the Seat.php class file. We will consider the case of a customer clicking the 'cancel' button on the

booking page. Add a method to the Seat object which will reset the reserved seats as available. Save the

Seat.php file and copy it to the server.

 public static function cancelReservation($flightID,$seatlist)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $seatsSelected = explode("*", $seatlist);
 for($k = 0; $k < count($seatsSelected); $k++)
 {
 $seatLetterWanted=substr($seatsSelected[$k],-1,1);
 $seatRowWanted=substr($seatsSelected[$k],0,-1);
 $query="UPDATE seats SET booked='0',bookingTime='0000-00-00 00:00:00'
 WHERE flightID='".$flightID."' AND rowNumber='".$seatRowWanted."'
 AND seatLetter = '".$seatLetterWanted."'";
 $result=mysqli_query($conn, $query);
 }
 mysqli_close($conn);
 }

 }
 ?>

Open the index.php file. If a customer cancels their transaction, they will be returned to this page.

Add a block of code at the start of index.php which collects details of the flight and seats selected, then
calls the cancelReservation() method in the Seat class file to re-set the seats as available.

<?
 include('Seat.php');
 $cancel=$_REQUEST['cancel'];
 if ($cancel=='YES')
 {
 $flightSelected=$_REQUEST['flight'];
 $seatsSelected=$_REQUEST['seats'];
 Seat::cancelReservation($flightSelected,$seatsSelected);

 }
?>

<html>
 <head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />

101

Chapter 3: Airline booking system

Save the updated index.php file and copy it to the server.

Run the web site. Select a flight and seats, then continue to the payment page. Click the 'cancel
transaction' button. The program should return to the homepage. If the same flight is now selected, the
seats reserved earlier should now be available again.

Re-open the customerDetails.php file. We will now consider the situation when the customer enters

payment details and selects the 'complete booking' button. Validation checks may be carried out on the

text entries. As an example, we will carry out presence checks for the forename and surname fields.

Replace the 'echo <form>' command with the line of code shown, then add the <script> block. Save the

customerDetails.php file and copy it to the server.

 else
 {
 $bookingTime = date("Y-m-d H:i:00");
 Seat::reserveSeats($flightSelected, $seatsSelected,$bookingTime);

 echo"<form method=post action='confirm.php?flight=$flightSelected&
 seatsSelected=$seatsSelected' onsubmit='return checkInput()'>";

 ?>

 <script>
 function checkInput()
 {
 forename = document.getElementById("forename").value;
 surname = document.getElementById("surname").value;
 var error=false;
 var n = forename.length;
 if (n<1)
 {
 alert("Forename must be entered");
 error=true;
 }
 n = surname.length;
 if (n<1)
 {
 alert("Surname must be entered");
 error=true;
 }
 if (error==true)
 result=false;
 else
 result = true;
 return result;
 }
</script>

<table cellpadding=10>
<tr>
 <?
 echo "<td>".$dateFormatted;

Run the website, select a flight and seats, then click the 'continue' button. The customer details page will
open. Click the 'complete booking' button without entering a customer name. An error message should be
displayed.

102

Web-based programming projects

Before the booking record is entered into the database, the Javascript function checkInput() is called. This
contains code to carry out the presence checks. Further validation code can be added for other fields as
required. The next web page confirm.php will only be loaded if no errors are found.

Continue work on customerDetails.php. In a real system, the web page would at this point contact a bank

to authorise the customer's payment. A result would be returned to indicate whether payment had been

accepted. We will simulate this with a Javascript function. Replace the else condition with the line of code

shown, and add the bankCheck() function to the <script> block.

 alert("Surname must be entered");
 error=true;
 }
 if (error==true)
 result=false;
 else

 result = bankCheck();

 return result;
 }

 function bankCheck()
 {

 var r = Math.random();
 if (r<0.75)
 {
 alert("Payment has been authorised by your bank");
 return true;
 }
 else
 {
 alert("Payment has been declined.
 Please make payment with a different card.");
 return false;

 }
 }

 </script>

Save the updated customerDetails.php file and copy it to the server. Select a flight and seats, enter
customer details, then click the 'complete booking' button.

The bankCheck() function generates a random decimal fraction between 0.0 and 1.0 If this value is 0.75 or
greater, the function simulates the customer's payment being refused; this represents a probability of one
in four.

<table cellpadding=10>

103

Chapter 3: Airline booking system

Return to the customerDetails.php file.

Referring back to the state diagram above, we should terminate the booking procedure if the allocated
time for entering contact information and making payment is exceeded. For test purposes, we will set this
time to be 10 minutes. Insert a timer function at the start of the <body> block.

 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>

 <script>
 setTimeout(function()
 {
 alert("Time expired. Please re-enter your booking");
 window.location = "selectFlight.php";
 },
 600000);
</script>

<?
 $flightSelected=$_REQUEST['flight'];
 $seatsSelected=$_REQUEST['seatlist'];

Save the customerDetails.php file and copy it to the server. Run the website, go to the customer details

input page, then leave the page open. After 10 minutes, the setTimeout() function should operate and

display an alert message that the allowed time for booking has expired. The selectFlight page is then

reloaded, and the customer has the option to repeat the booking process.

Re-open the Seat.php class file. We must now consider the possibility that the customer simply decides
not to continue with the booking and switches off their computer. In this circumstance, the seats which
were temporarily reserved must be released for resale once the 10 minute booking period has expired. To
do this, add a timeOut() method to the Seat.php class file as shown in the two boxes below:

 public static function timeOut()
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM seats WHERE booked = '1'";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 $timeNow = date("Y-m-d H:i:00");
 $hour2=substr($timeNow,11,2);
 $minute2=substr($timeNow,14,2);
 $minutes2=$hour2*60 + $minute2;
 $i=0;
 while ($i < $num)
 {
 $row=mysqli_fetch_assoc($result);
 $seatID=$row["seatID"];
 $bookingTime=$row["bookingTime"];
 $hour1=substr($bookingTime,11,2);
 $minute1=substr($bookingTime,14,2);
 $minutes1=$hour1*60 + $minute1;
 if ($minutes1>$minutes2)
 $minutes2=$minutes2+24*60;
 $timeDiff=$minutes2 - $minutes1;

104

Web-based programming projects

Continued:

 if ($timeDiff>10)
 {
 $query2="UPDATE seats SET booked='0', bookingTime=null
 WHERE seatID='$seatID'";
 $result2=mysqli_query($conn, $query2);
 }
 $i++;
 }
 mysqli_close($conn);
 }
}
?>

Save the Seat.php file and copy it to the server. The timeOut() function begins by extracting all records
from the seat table in the database which are temporarily reserved with a booked code of 1. Records
contain the exact times when the booking procedure commenced. These values are converted to the
number of minutes after the start of the current day, then compared against the current time. If the
booking commenced 10 minutes or more before the current time, the seat record is released by resetting
the booked code to 0 and cancelling the booking time. The seat is now available again for booking.

Re-open the selectFlight.php file. We will call the timeOut() method each time the selectFlight page is
loaded. This ensures that customers will view the up-to-date seat availability for any flight selected. Add
the function at the start of selectFlight.php, save the file and copy it to the server.

<?
 include('Seat.php');
 Seat::timeOut();
?>

<html>
 <head>
 <title> Cambrian Air </title>

Save the selectFlight.php file and copy it to the server. Run the website, select a flight and seats, then
continue to the customer details page. Close the website, wait for 10 minutes then reload the home page.
Select the same flight and check that the seats you selected previously are available again.

We will now move on to complete the booking. Open the PHP MyAdmin web site for the database. Set up
an airBooking table ready to handle the transfer of bookings from the web page.

105

Chapter 3: Airline booking system

Add fields as shown above. The bookingID field is designated as the primary key and set to auto-
increment.

Open a blank file and save this as Booking.php. Add the lines of code below to produce a Booking class.
Attributes correspond to the database fields, and a constructor method is included. Save the Booking.php
file and copy it to the server.

<?
class Booking
{

 public static $booking = array();
 public static $bookingCount;
 private $bookingID;
 private $paymentDate;
 private $flightID;
 private $title;
 private $forename;
 private $surname;
 private $address1;
 private $address2;
 private $town;
 private $postcode;
 private $email;
 private $paymentAmount;
 private $cardType;
 private $cardNumber;
 private $expiryDate;

 public function __construct($bookingID, $paymentDate, $flightID, $title,
 $forename, $surname, $address1, $address2, $town, $postcode, $email,
 $paymentAmount, $cardType, $cardNumber, $expiryDate)
 {
 $this->bookingID = $bookingID;
 $this->paymentDate = $paymentDate;
 $this->flightID = $flightID;
 $this->title = $title;
 $this->forename = $forename;
 $this->surname = $surname;
 $this->address1 = $address1;
 $this->address2 = $address2;
 $this->town = $town;
 $this->postcode = $postcode;
 $this->email = $email;
 $this->paymentAmount = $paymentAmount;
 $this->cardType = $cardType;
 $this->cardNumber = $cardNumber;
 $this->expiryDate = $expiryDate;
 }

}
?>

The next step is to produce the booking confirmation page. Open a blank file and add the code below.
Save this as confirm.php then copy it to the server.

106

Web-based programming projects

<html>
<head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <table class=menu>
<tr><th class=menu>

Airport information

<th class=menu>

Booking

</table>
<p>

 <?
 $title = $_REQUEST["title"];
 $forename = $_REQUEST["forename"];
 $surname = $_REQUEST["surname"];
 $address1 = $_REQUEST["address1"];
 $address2 = $_REQUEST["address2"];
 $town = $_REQUEST["town"];
 $postcode = $_REQUEST["postcode"];
 $email = $_REQUEST["email"];
 $cardType = $_REQUEST["cardType"];
 $cardNumber = $_REQUEST["cardNumber"];
 $expireMonth = $_REQUEST["expireMonth"];
 $expireYear = $_REQUEST["expireYear"];
 $expiryDate = $expireMonth."/".$expireYear;
 $paymentAmount = $_REQUEST["paymentAmount"];
 ?>
</body>
 </html>

The page displays menu options and the company logo, then accesses customer contact and payment
information from the input boxes on the previous page. Add code which will display details of the flight
and seats booked, as shown on the next page.

Save the confirm.php file and copy it to the server. Run the public web site, make a booking and click the
complete booking button. Check that the flight details are shown correctly.

107

Chapter 3: Airline booking system

 $expiryDate = $expireMonth."/".$expireYear;
 $paymentAmount = $_REQUEST["paymentAmount"];
 ?>

<table cellpadding=10>
 <tr>
 <th>Your booking is confirmed
 <tr>
 <td>
 <?
 include('Flight.php');
 include('Seat.php');
 $flightSelected=$_REQUEST['flight'];
 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->getFlightDate();
 $dateFormatted = substr($flightDate,8,2)."/".substr($flightDate,5,2).
 "/".substr($flightDate,0,4);
 $flightTime=Flight::$flightObj[0]->getFlightTime();

 $flightNumber=Flight::$flightObj[0]->getFlightNumber();
 $flightFrom=Flight::$flightObj[0]->getFlightFrom();
 $flightTo=Flight::$flightObj[0]->getFlightTo();
 echo $dateFormatted ." ".$flightTime." Flight ".$flightNumber.": ".
 $flightFrom." to ".$flightTo;
 $seatsSelected=$_REQUEST['seatsSelected'];
 $output = str_replace("*"," ",$seatsSelected);
 echo" Seats selected: ".$output;
 ?>
 </table>

</body>
</html>

Re-open the Booking.php class file. Add a method makeBooking() to save the booking record.

public static function makeBooking($flightSelected, $seatsSelected,
 $paymentDate, $title, $forename, $surname, $address1, $address2, $town,
 $postcode, $email, $paymentAmount, $cardType, $cardNumber, $expiryDate)
{
 $paymentDate = date("Y-m-d H:i:00");
 include('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="INSERT INTO airBooking VALUES ('$bookingID','$paymentDate',
 '$flightSelected','$title','$forename','$surname','$address1',
 '$address2', '$town', '$postcode', '$email', '$paymentAmount',
 '$cardType', '$cardNumber', '$expiryDate')";
 $result=mysqli_query($conn, $query);
 $bookingID = mysqli_insert_id($conn);
 mysqli_close($conn);
 Seat::confirmSeats($flightSelected, $seatsSelected, $bookingID);
}

}
?>

Save the Booking.php file and copy it to the server.

The bookingID should also be added to the seat records for the seats required, and the records updated to
indicate that the seats are no longer available. To do this, re-open the Seat.php class file and add the
method below. Save the Seat.php file and copy it to the server.

108

Web-based programming projects

public static function confirmSeats($flightSelected, $seatsSelected, $bookingID)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $seats = explode("*", $seatsSelected);
 for($k = 0; $k < count($seats); $k++)
 {
 $seatLetterWanted=substr($seats[$k],-1,1);
 $seatRowWanted=substr($seats[$k],0,-1);
 $query="UPDATE seats SET booked='2',journeyBookingID='$bookingID'
 WHERE flightID='".$flightSelected."' AND rowNumber='".$seatRowWanted.
 "' AND seatLetter = '".$seatLetterWanted."'";
 $result=mysqli_query($conn, $query);
 }
 mysqli_close($conn);
 }

}
?>

Finally, we can call these methods to update the booking and seat records. Re-open the confirm.php file
and add the lines of code below. Save the file and copy it to the server.

$seatsSelected=$_REQUEST['seatsSelected'];
$output = str_replace("*"," ",$seatsSelected);
echo" Seats selected: ".$output;

include('Booking.php');
Booking:: makeBooking($flightSelected, $seatsSelected, $paymentDate, $title,
 $forename, $surname, $address1, $address2, $town, $postcode, $email,
 $paymentAmount, $cardType, $cardNumber, $expiryDate);

?>
</table>
</body>
</html>

Run the public website. Select a flight and book several seats. Complete the booking to reach the
confirmation page.

Open the PHP MyAdmin website and examine the airBooking table in the database. The new booking
should have been added and a bookingID allocated. Go now to the seats table and locate the flight and
seats requested. The seat records should now show the bookingID, and the booked value should be set to
2 to indicate that the seat is no longer available for booking.

On completion of the booking procedure the airline should send a confirmation e-mail to the customer
with details of the flight and seats booked, for example:

109

Chapter 3: Airline booking system

Re-open the confirm.php file and add the lines of code below. The program sets up an e-mail message and
then sends it to the e-mail address entered by the customer. Save the confirm.php file and copy it to the
server.

include('Booking.php');
 Booking::makeBooking($flightSelected, $seatsSelected, $paymentDate, $title,$forename,
$surname, $address1, $address2, $town, $postcode, $email,$paymentAmount, $cardType,
$cardNumber, $expiryDate);

echo"<tr><td> An e-mail has been sent to you to confirm your booking.";
$customer=$title." ".$forename." ".$surname;
$address3=$town.", ".$postcode;
$subject="Cambrian Airways booking confirmation ";
$body='Your booking is confirmed:';
$body=$body."\n"."\nName: ".$customer;
$body=$body."\n"."Address: ";
$body=$body."\n".$address1;
$body=$body."\n".$address2;
$body=$body."\n".$address3;
$body=$body."\n"."\nFlight: ";
$body=$body."\n".$dateFormatted ." ".$flightTime." Flight ".$flightNumber.
 ": ".$flightFrom." to ".$flightTo;
$body=$body."\nSeats selected: ".$output;
$from= "bookings@cambrianair.com";
$headers="From: ".$from;
$to=$email;
mail($to,$subject,$body,$headers);

?>
</table>
</body>

</html>

Run the public web site, select a flight and seats. Continue to the customer details page and enter a
customer name, address and payment details. Add your own e-mail address. Click the 'complete booking'
button to load the confirm.php page.

110

Web-based programming projects

Access your e-mail system. Check that a confirmation e-mail has been received and contains the
customer's name, address and flight details. (if the e-mail does not arrive in your in-box, please check the
spam folder.)

This completes the customer booking system. We can now return to the staff section of the website to
finish the flight information pages.

When a member of staff logs-in to the website, the flights are listed with a 'display bookings' button
alongside each flight record. These buttons have been set up to load a staffDisplayBookings2.php page
which we will now create. This will display a seating plan and show the bookings for the flight. Open a
blank file and add the lines of program code below.

<html>
 <head>
 <title> Cambrian Air </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>
 <?
 include('staffMenu.php');
 ?>
 <p>
 <table cellpadding=10>
 <tr><td>
 <?
 $flightSelected=$_REQUEST['flightSelected'];
 include('Flight.php');
 include('Seat.php');
 Seat::loadSeats($flightSelected);
 Flight::selectFlightByID($flightSelected);
 $flightDate=Flight::$flightObj[0]->getFlightDate();

 $dateFormatted = substr($flightDate,8,2)."/".substr($flightDate,5,2).
 "/".substr($flightDate,0,4);
 $flightTime=Flight::$flightObj[0]->getFlightTime();
 $flightNumber=Flight::$flightObj[0]->getFlightNumber();
 $flightFrom=Flight::$flightObj[0]->getFlightFrom();
 $flightTo=Flight::$flightObj[0]->getFlightTo();
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;

 ?>
 </table>
 </body>
 </html>

Save the file as staffDisplayBookings2.php and copy it to the server.

Log-in to the staff web site, select a flight and click the 'display bookings' button. The new page should
open to display the staff menu, company logo and details of the flight selected.

Return to staffDisplayBookings2.php and add the lines of code below. These display a seating plan for the
aircraft in a very similar way to the booking page of the public web site.

111

Chapter 3: Airline booking system

Please note that the values of the variables $Yoffset and $Xoffset at the start of the code block can be
adjusted if necessary so that the pattern of seats aligns correctly with the aircraft outline.

 $flightTo=Flight::$flightObj[0]->getFlightTo();
 echo $dateFormatted." ".$flightTime." Flight ".$flightNumber.
 " from ".$flightFrom." to ".$flightTo;

 ?>

<tr><td>
<?
 $Yoffset =170; $Xoffset = 11;
 $down = 114;
 $Xgap = 37; $Ygap = 30;
 $down = $down + $Yoffset;
 for ($j=0; $j<3; $j++)
 {
 switch ($j)
 {
 case 0: $r="C";break;
 case 1: $r="B";break;
 case 2: $r="A";break;
 }
 $down = $down + $j * $Ygap;
 if ($j==2)
 $down = $down - 2;
 for ($i=0; $i<11; $i++)
 {
 $seat = $i+1;
 $across = 323 + $Xoffset+ $i * $Xgap;
 if ($i>4)
 $across = $across +12;
 if (($i>7)&&($j<2))
 $across = $across +12;
 $c='#D3D3D3';
 if(($i<10)||($j==2))
 {
 if (($j<2)||($i>0))
 {
 echo"<button style='position:absolute;left:".$across
 ."px;top:".$down."px;font-size:18px;border-radius:4px;
 width:26px;background-color:".$c.";'> </button>";
 }
 }
 }
 }
 ?>
</td></tr>

</table>
</body>
</html>

Save the staffDisplayBookings2.php file and copy it to the server. Run the 'display bookings' option again.
The seating plan should now be shown, but with all seats shown in grey.

Return to the staffDisplayBookings2.php file and add the block of code below. This uses a loop to locate
the Seat object corresponding to each seat before it is displayed. If the booked attribute of the seat is set
to 2, the display colour is changed from grey to red.

112

Web-based programming projects

 if (($i>7)&&($j<2))
 $across = $across +12;
 $c='#D3D3D3';

 for ($count=1; $count<=30; $count++)
 {
 $rowNumber=Seat::$seatObj[$count]->getRowNumber();
 $seatLetter=Seat::$seatObj[$count]->getSeatLetter();
 $booked=Seat::$seatObj[$count]->getBooked();
 if ((($i+1)==$rowNumber)&&($r==$seatLetter))
 {
 if ($booked==2)
 {
 $c='#cd5c5c';
 }
 }
 }

 if(($i<10)||($j==2))
 {
 if (($j<2)||($i>0))
 {

Save the staffDisplayBookings2.php file and copy it to the server.

Go to the PHP MyAdmin website and clear the previous test data from the flight, seats and airBooking
tables. This can be done by selecting the Operations menu option and clicking 'Empty table (TRUNCATE)'.

Enter test data for one flight with seats booked by several customers. To do this:

 Run the website and log-in as staff. Enter details for one flight. A set of empty seat records will be

created automatically.

 Run the website again as a member of the public. Go to the bookings page, select several seats,

then complete the booking procedure by entering the customer's name, address, e-mail and

payment information. Repeat this for several more customers booking seats on the same flight.

 Run the website and log-in as staff. Select the flight entered earlier. Check that the seating

diagram appears, with the booked seats highlighted in red.

A final step is to add a table of bookings for the flight. Return to the staffDisplayBookings2.php file and add

the block of program code shown below. This begins by displaying the column headings for the table, then

calls a displayFlightBookings() method which we will add to the Booking class file.

113

Chapter 3: Airline booking system

 echo"<button style='position:absolute;left:".$across
 ."px;top:".$down."px;font-size:18px;border-radius:4px;
 width:26px;background-color:".$c.";'> </button>";
 }
 }
 }
 }
 ?>

 <h3>Bookings</h3>
<table class = f>
 <tr>
 <td></td>
 </tr>
 <tr>
 <td>Row</td>
 <td>Seat</td>
 <td>BookingID</td>
 <td>Title</td>
 <td>Forename</td>
 <td>Surname</td>
 <?
 include('Booking.php');
 Booking::displayFlightBookings($flightSelected);
 ?>
 </tr>
</table>

 </td></tr>
</table>
</body>
</html>

Save the staffDisplayBookings2.php and copy it to the server.

Open the Booking.php class file and add the displayFlightBookings() method as shown in the two boxes
below.

public static function displayFlightBookings($flightSelected)
{
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 for($i=1;$i<=30; $i++)
 {
 $rowNumber =Seat::$seatObj[$i]->getRowNumber();
 $seatLetter=Seat::$seatObj[$i]->getSeatLetter();
 $booked=Seat::$seatObj[$i]->getBooked();
 $bookingID=Seat::$seatObj[$i]->getBookingID();
 if ($booked==2)
 {
 $query="SELECT * FROM airBooking WHERE bookingID = '".$bookingID."'";
 $result=mysqli_query($conn, $query);
 $row=mysqli_fetch_assoc($result);
 $title=$row["title"];
 $forename=$row["forename"];
 $surname=$row["surname"];
 echo "<tr class = f>";
 echo "<td class = f>".$rowNumber."</td>";

114

Web-based programming projects

 echo "<td class = f>".$seatLetter."</td>";
 echo "<td class = f>".$bookingID."</td>";
 echo "<td class = f>".$title."</td>";
 echo "<td class = f>".$forename."</td>";
 echo "<td class = f>".$surname."</td>";
 echo "<td class = f><button name='bookingSelected'
 value='".$bookingID."'>booking details</button>";
 }
 }
 mysqli_close($conn);

}

}
?>

The displayFlightBookings() method examines the booked attribute for each of the Seat objects. If
booked is set to 2, the bookingID attribute is used to obtain the corresponding customer name from the
airBooking table in the database.

Save the Booking.php file and copy it to the server.

Return to the staff bookings page of the website and select the flight entered earlier. The seating diagram

will be displayed along with a table showing the customer name and bookingID for each of the booked

seats, as in the example below.

The staffDisplayBookings2 web page calls the displayFlightBookings() method in the Booking class, which

loads all bookings for the selected flight. This includes the customer's address, e-mail and payment details.

A button has been added alongside each booking record in the display table. It is left as a further

programming exercise to add another web page which will display this extra information if required.

Re-open the staffDisplayBookings.php file. One final task is to add the timeOut() function. This will ensure
that any abandoned bookings are deleted and the data is correct when the aircraft seating plans and

115

Chapter 3: Airline booking system

passenger lists are displayed. Add the code below to the PHP block at the start of
staffDisplayBookings.php. Save the file and copy it to the server.

 <?
 session_start();
 $user=$_REQUEST['user'];
 $pass=$_REQUEST['pass'];
 $login=$_SESSION['login'];

 include('Seat.php');
 Seat::timeOut();

?>

Further development

The airline booking system demonstrated here is considerably simplified:

Access to the banking system is simulated; the arrangements and protocols provided by banks for on-
line payment to businesses might be investigated by students.

The names of all travelling passengers would be required in a real system, rather than just the
customer making the booking. The name of the passenger allocated to each seat on the aircraft would
be recorded. This requirement could be implemented as a further development of the program.

Other travel booking systems might be developed, for example: for coach tours, boat excursions, or
heritage steam railway events. Real time seat booking systems could be developed for theatre
productions, music concerts or sports events.

Summary of the object structures

Staff

A Staff object contains the staffID which is set by the
database as an auto-number, along with the user name and
password. Two methods are included which check the
input data for valid log-in details. The public method
checkPassword() calls the private method checkUser() to
examine each Staff object in turn, then returns an overall
true/false result depending on whether valid log-in details
were found.

Flight

Objects in the Flight class are identified as elements of the flightObj[] array, with the total number of flight
objects stored as the public static attribute itemcount. Attributes of individual Flight objects can be
accessed through a set of get() methods. Methods are included to add a new flight to the database, to
create objects for all flights on a particular date or route, and to create a single object for a flight with a
specified FightID value.

Seat

Seat objects have attributes specifying the row and seat letter, and a booking code to indicate whether the
seat is available, booked, or currently reserved during the booking procedure. Methods create a set of seats
for a new flight, load all the seat bookings for a particular flight, reserve seats temporarily or make definite
bookings. Methods can also cancel seat bookings on request, or when the allowed booking time has
expired.

116

Web-based programming projects

Booking

Attributes of Booking objects record the contact details and payment details for customers. Methods allow
a booking to be added to the database, and all bookings for a particular flight to be retrieved and displayed.

- private

+ public

underlined static

+

